

Formation of N-Alkoxyindole Framework: Intramolecular Heterocyclization of 3-Alkoxyimino-2-arylalkylnitriles Mediated by Ferric Chloride

Yunfei Du,[†] Junbiao Chang,^{*,†,‡} John Reiner,[†] and Kang Zhao^{*,†}

The School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China, and Department of Chemistry, Zhengzhou University, Zhengzhou 450001, China

combinology@yahoo.com

Received November 15, 2007

A variety of functionalized *N*-alkoxyindole-3-carbonitrile derivatives are achieved under remarkably mild conditions by applying a FeCl₃-mediated intramolecular heterocyclization of 3-alkoxyimino-2-arylalkylnitriles. This novel synthesis allows the *N*-moiety on the side chain to be annulated to the benzene ring as the final synthetic step, which enables the functionalization of the benzenoid portion of the indole at an early stage of the synthesis.

The *N*-alkoxyinodoles have attracted considerable attention since a number of alkaloids possessing the *N*-methoxyindole skeleton have been isolated and reported in the literature.¹ Furthermore, the biological activity of some indole-based pharmaceutical agents can be considerably improved after

replacing the indole N–H with an *N*-methoxy moiety.² While the potential importance of the *N*-alkoxyindole skeleton is evident, a survey of the literature indicated that the methods developed for the synthesis of the *N*-alkoxyindole nucleus can be generalized into the following types: (1) methylation of *N*-hydroxyindoles with dimethyl sulfate or diazomethane (path a in Figure 1);^{1c,3} (2) dehydration of 2-hydroxyindoline derivatives catalyzed by aqueous HCl (path b in Figure 1);⁴ (3) cyclization of the requisite *o*-*nitro* functionalized substrate mediated by NaCl/DMSO at high temperature (path c in Figure 1);⁵ (4) alkylative cycloaddition of *nitroso*arenes with alkynes in the presence of K₂CO₃/Me₂SO₄ (path d in Figure 1);⁶ and (5) intramolecular cyclization of an *a*-aryl ketone oxime derivative via a nitrenium ion intermediate (path e in Figure 1).⁷

An intramolecular cyclization strategy in which a pendant nitrogen moiety is annulated to a benzene ring provides a unique access to multiply substituted indoles since such a method would avoid using the use of "privileged" *N*-functionalized arenes as starting materials and the introduction of the nitrogen atom could be postponed to a later synthetic step.⁸ Herein, we report such an intramolecular cyclization method for the construction of *N*-alkoxyindoles by direct C–H amination of an aromatic ring with a side chain *N*-moiety thus enabling access to an assortment of benzo-functionalized indoles.

In a previous study,^{8g} we reported a PIFA-mediate oxidative cyclization for the conversion of compound 2' to compound 3'. Since this cyclization protocol easily produced indoles with either an *N*-alkyl or *N*-aryl group, we were interested in extending the reaction to access natural products with the *N*-alkoxyindole skeleton. The oxime ether substrate 2, prepared from β -ketonitriles 1, under identical cyclization conditions could also produce the desired *N*-alkoxyindole 3;⁹ however, the yield (9–35%) was fairly unsatisfactory (entries 1–6, Table

(6) Penoni, A.; Palmisano, G.; Broggini, G.; Kadowaki, A.; Nicholas, K. M. J. Org. Chem. **2006**, *71*, 823.

(7) Creary, X.; Wang, Y.-X.; Jiang, Z. J. Am. Chem. Soc. 1995, 117, 3044.

(8) (a) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int. Ed. 2005, 44, 403. (b) Watanabe, M.; Yamamoto, T.; Nishiyama, M. Angew. Chem., Int. Ed. 2000, 39, 2501. (c) Foucaud, A.; Razorilalan-Rabearivony, C.; Loukakou, E.; Person, H. J. Org. Chem. 1983, 48, 3639. (d) Tercel, M.; Gieseg, M. A.; Denny, W. A.; Wilson, W. R. J. Org. Chem. 1999, 64, 5946. (e) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2006, 128, 1058. (f) Brown, J. A. Tetrahedron Lett. 2000, 41, 1623. (g) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Org. Lett. 2006, 8, 5919.

(9) For our previous work describing this, see: Zhao, K.; Chang, J.; Guo, H.; Du, Y. Faming Zhuanli Shenqing Gongkai Shuomingshu, CN 1 629 140, 22 Jun 2005; Chem. Abstr. **2006**, 144, 128851.

[†] Tianjin University.

[‡] Zhengzhou University.

^{(1) (}a) Konda, Y.; Onda, M.; Hirano, A.; Omura, S. Chem. Pharm. Bull. 1980, 28, 2987. (b) Ito, C.; Wu, T.-S.; Furukawa, H. Chem. Pharm. Bull. 1988, 36, 2377. (c) Kawasaki, T.; Kodama, A.; Nishida, T.; Shimizu, K.; Somei, M. Heterocycles 1991, 32, 221. (d) Somei, M. Heterocycles 1999, 50, 1157. (e) Soledade, M.; Pedras, C.; Sorenson, J. L. Phytochemistry 1998, 49, 1959. (f) Selvakumar, N.; Khera, M. K.; Reddy, B. Y.; Srinivas, D.; Azhagan, A. M.; Iqbal, J. Tetrahedron Lett. 2003, 44, 7071. (g) Boger, D. L.; Keim, H.; Oberhauser, B.; Schreiner, E. P.; Foster, C. A. J. Am. Chem. Soc. 1999, 121, 6197. (h) Somei, M. Adv. Heterocycl. Chem. 2002, 82, 101. (i) Kinoshita, T.; Tatara, S.; Ho, F.-C.; Sankawa, U. Phytochemistry 1989, 28, 147. (j) Ohmoto, T.; Koike, K. Chem. Pharm. Bull. 1983, 31, 3198. (k) Sung, Y.-I.; Koike, K.; Nikaido, T.; Ohmoto, T.; Sankawa, U. *Chem. Pharm. Bull.* **1984**, *32*, 1872. (1) Kinoshita, T.; Tatara, S.; Sankawa, U. *Chem. Pharm. Bull.* **1985**, *33*, 1770. (m) Agerbirk, N.; Petersen, B. L.; Olsen, C. E.; Halkier, B. A.; Nielsen, J. K. J. Agric. Food Chem. 2001, 49, 1502. (n) Kutschy, P.; Dzurilla, M.; Takasugi, M.; Török, M.; Achbergerová, H. R.; Rária, M. Tetrahedron 1998, 54, 3549. (o) Acheson, R. M. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Academic Press: San Diego, CA, 1990; Vol. 51, pp 105-175.

^{(2) (}a) Neave, A. S.; Sarup, S. M.; Seidelin, M.; Duss, F.; Vang, O. *Toxicol. Sci.* 2005, *83*, 126. (b) Stephensen, P. U.; Bonnesen, C.; Schaldach, C.; Andersen, O.; Bjeldanes, L. F.; Vang, O. *Nutr. Cancer* 2000, *36*, 112. (c) Tsotinis, A.; Eleutheriades, A.; Hough, K.; Sugden, D. *Chem. Commun.* 2003, 382.

^{(3) (}a) Dean, F. M.; Patampongse, C.; Podimuang, V. J. Chem. Soc., Perkin Trans. 1 1974, 583. (b) Masanori, S.; Kensuke, K.; Keiko, T.; Toshihiko, M.; Yumiko, K.; Yoshikazu, F. Heterocycles 1995, 40, 119.

^{(4) (}a) Somei, M.; Yamada, F.; Kurauchi, T.; Nagahama, Y.; Hasegawa, M.; Yamada, K.; Teranishi, S.; Sato, H.; Kaneko, C. *Chem. Pharm. Bull.* **2001**, *49*, 87. (b) Somei, M.; Sato, H.; Kaneko, C. *Heterocycles* **1983**, *20*, 1797.

^{(5) (}a) Selvakumar, N.; Reddy, Y.; Azhagan, A. M.; Khera, M. K.; Babu,
J. M.; Iqbal, J. *Tetrahedron Lett.* **2003**, *44*, 7065. (b) Selvakumar, N.; Khera,
M. K.; Reddy, Y.; Srinivas, D.; Azhagan, M.; Iqbal, J. *Tetrahedron Lett.* **2003**, *44*, 7071. (c) Selvakumar, N.; Rajulu, G. G. J. Org. Chem. **2004**, *69*, 4429.

FIGURE 1. Existing strategies for construction of the *N*-methoxyindole skeleton.

FIGURE 2. Synthesis of *N*-substituted indoles by joining the pendent *N*-moiety to the benzene ring.

1), although substrate 2 in each case was totally consumed.¹⁰ A subtle change in the electronic configuration of the oxime ether 2 as compared to the enamine 2' is apparently the cause for the observed difference in reactivity. Thus new oxidative cyclization conditions were investigated (entries 7-14, Table 1) which led to the discovery that the single electron oxidant FeCl₃ could conveniently convert **2a** into **3a**. A study to optimize reaction parameters by using 2a as substrate (entries 15-20, Table 1) indicated that CH₂Cl₂ was a desirable solvent for the reaction, and at least 2 equiv of FeCl3 was needed for the complete consumption of 2a. As the reaction proceeded, the formation of gaseous HCl was observed. Furthermore, it was found that the isomeric oximes, cis isomer 2b-1 and trans isomer 2b-2, afforded the same cyclized product 3b in yields of 79% and 82%, respectively. For all subsequent studies, a mixture of the two oxime isomers¹¹ was used directly without separation. The results listed in Table 2 demonstrated that both electronwithdrawing and electron-donating aromatic substituents could be tolerated. Entries 9 and 10 (Table 2) showed that when R³ was a bulkier *n*-butyl or benzyl group, the reaction was not significantly altered. However, when R² was a bulkier phenyl or benzyl group (entries 2 and 12-15, Table 2), the reaction time was obviously longer and the yields were reduced (56-

 TABLE 1. Conditions Screened for the Intramolecular Cyclization

 Reaction of 3-Alkoxyimino-2-arylalkylnitriles 2

entry ^a	oxidant (equiv)	2	solvent	temp (°C)	time (h)	yield (%) ^b				
1	PIFA (1.3)	2a	CH ₂ Cl ₂	rt	24	10 ^c				
2	PIFA (1.3)	2c	CH ₂ Cl ₂	rt	24	15^{c}				
3	PIFA (1.3)	2f	CH_2Cl_2	rt	24	13 ^c				
4	PIFA (1.3)	20	CH_2Cl_2	rt	24	9 ^c				
5	PIFA (1.3)	2t	CH_2Cl_2	rt	24	35 ^c				
6	PIFA (1.3)	2a	toluene	105	12	12^{c}				
7	$I_2(5)$	2a	CH_2Cl_2	rt	6	0				
8	$MnO_2(3)$	2a	CH ₂ Cl ₂	rt	6	0				
9	DDQ (3)	2a	CH ₂ Cl ₂	rt	6	0				
10	CAN (3)	2a	MeOH	rt	6	0				
11	$Cu(Oac)_2 \cdot H_2O(4)$	2a	AcOH	110	6	0				
12	$Mn(OAc)_3 \cdot 2H_2O(3)$	2a	AcOH	110	6	0				
13	$FeCl_3 \cdot 6H_2O(3)$	2a	CH_2Cl_2	rt	6	0				
14	FeCl ₃ (1.5)	2a	CH_2Cl_2	rt	3	50^d				
15	FeCl ₃ (2.0)	2a	CH_2Cl_2	rt	2	77				
16	FeCl ₃ (2.2)	2a	CH ₂ Cl ₂	rt	<1	82				
17	FeCl ₃ (2.2)	2a	MeOH	rt	12	0				
18	FeCl ₃ (2.2)	2a	EtOAc	rt	12	trace				
19	FeCl ₃ (2.2)	2a	MeCN	rt	12	trace				
20	FeCl ₃ (2.2)	2a	THF	rt	12	trace				
(All reactions were run in commencial and columnts without inset										

^{*a*} All reactions were run in commercial grade solvents without inert atmosphere protection. ^{*b*} Isolated yields after silica gel chromatography. ^{*c*} Contains several unidentified byproducts. ^{*d*} 20% of **2a** recovered.

64%). When R^2 was hydrogen (entry 11, Table 2), the 2-unsubstituted *N*-alkoxyindole **3j** was obtained in acceptable yield. The reaction was also compatible with multiple substituents on the benzene ring (entries 17 and 21, Table 2).

Meta-Substituted aromatic reactants have the possibility of producing two regioisomeric products. With the *m*-chloro- or *m*-trifluoromethylbenzenes (entries 18 and 19, Table 2), similar quantities of the regioisomeric indoles were observed; however, for the substrates 2s, 2t, and 2v, the single regioisomeric products 3s, 3t, and 3v were found, respectively.

An important extension of this heterocyclization methodology is to use alternative types of aromatic rings to generate different classes of pyrrole-fused heterocycles such as the hitherto unknown 3u-w from the substrates 2u-w. It is noteworthy that in the ¹³C NMR spectra, the *N*-methoxy group signal in 3ris split into a quartet, apparently the result of through space coupling¹² with the fluorines of the trifluoromethyl group at the 7 position, while this coupling is not observed in 3r'.

In our investigation of the scope and generality of this heterocyclization method, we found that seemingly closely related substrates (4-8 in Figure 3), when applied to the same reaction conditions, yielded none of the expected cyclized product, which indicates that a benzylic *cyano* group plays a crucial role in the course of the reaction. Interestingly, the result that substrates 7 and 8 were unable to cyclize could be predicted by the fact that only a single desired product **3m** was obtained for substrate **2m** (entry 14, Table 1), which implies that formation of an intermediate with a double bond conjugated with the benzene ring that will be cyclized by the pendent

⁽¹⁰⁾ In all cases, no successful results were achieved by varying experimental parameters: (a) use of various solvents, (b) adding TFA or BF₃·Et₂O as catalyst, and (c) carrying out the reactions at temperatures ranging between -78 and 150 °C.

⁽¹¹⁾ For the assignment of the cis and trans geometries, see: (a) Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Aoe, K.; Okamura, K.; Naito, T. J. Org. Chem. 2000, 65, 6922. (b) Johnson, J. E.; Springfield, J. R.; Hwang, J. S.; Hayes, L. J.; Cuningham, W. C.; McClaugherty, D. L. J. Org. Chem. 1971, 36, 284. (c) Johnson, J. E.; Ghafouripour, A.; Haug, Y. K.; Cordes, A. W.; Pennington, W. T. J. Org. Chem. 1985, 50, 993. (d) Johnson, J. E.; Nalley, E. A.; Kunz, Y. K.; Springfield, J. R. J. Org. Chem. 1976, 41, 252.

⁽¹²⁾ For the evidence of C-F space-coupling, see: (a) Jaime-Figueroa,
S.; Kurz, L. J.; Liu, Y.; Cruz, R. Spectrochim. Acta, Part A 2000, 56, 1167.
(b) Gribble, G. W.; Olson, E. R. J. Org. Chem. 1993, 58, 1631.

JOC Note

	Jan Synthesis of It Inno	Aymuoles o via mittai	orecului	11000100	Jenna		ar ynantymittines 2 meanau	<i>a by</i> i c	.013
entry	substrate 2	product 3	time (min)	yield (%) ^a	entry	substrate 2	product 3	time (min)	yield (%) ^a
1	CN N OMe 2a	N OMe 3a	40	82	13	CN N OMe 21	CN N OMe 31	60	64
2	Me MeO 2b-1	Me N Pr ⁿ OMe 3b	90	79	14	CN N OBn 2m	CN N OBn 3m	60	60
3	Me OMe 2b-2	Me N Pr ⁿ OMe 3b	90	82	15	Br OBu ⁿ 2n	Br N OBu ⁿ 3n	120	56
4	CI N N OMe 2c	CI N OMe 3c	40	91	16	Br OMe 20	Br N OMe 30	50	75
5	CN N OMe 2d	CN N OMe 3d	40	82	17	CI CN N OMe 2p		25	86
6	OMe CN N OMe 2e	OMe N OMe 3e	15	68	18	CI CN N OMe 2q	CI CI CN 3q N 3q OMe 3q'	30	7-C1: 42 / 5-C1: 37
7	Me CN	Me Ne OMe 31	20	83	19	F ₃ C N OMe 2r	F ₃ C N OMe 3r 3r'	20	7-CF ₃ : 40 / 5-CF ₃ : 38
8	F OMe 2g	F N OMe 3g	30	87	20	MeO N N OMe 2s	MeO N OMe 3s	10	70
9	CI N N OBu ⁿ 2h	CI N OBu ⁿ 3h	25	79	21	MeO MeO OMe 2t	MeO MeO N OMe 3t	10	74
10	CI N N OBn 2i	CI N OBn 3i	40	62	22	NC OMe 2u	NC N-OMe 3u	40	72
11	CI N N OMe 2j	CI N H OMe 3j	20	60	23		MeQ, N, CN 3v	40	75
12		CN N OMe 3k	80	57	24			25	65

TABLE 2. Synthesis of *N*-Alkoxyindoles 3 via Intramolecular Heterocyclization of 3-Alkoxyimino-2-arylalkylnitriles 2 Mediated by FeCl₃^c

 $\begin{array}{c} \text{HeO} \\ \text{MeO} \\ \text{MeO} \\ \text{OMe} \\ \text{Tr} = \text{Me} \\ \text{R} = \text{Bn} \\ \end{array}$

FIGURE 3. Other models that failed to cyclize via FeCl₃.

N-moiety is required. Besides, it was very surprising to find that the most similar substrate 5, differing from substrate 2t by replacement of the nitrile with an ester, also failed to provide

any detectable cyclized product under the same reaction conditions. A possible explanation for this might be that in the presence of an ester group, $FeCl_3$ would act as a Lewis acid, rather than a single electron oxidant. However, this method still has a significant implication for the synthesis of a large number of *N*-alkoxyindole derivatives since the *cyano* group is a versatile functionality.

Potential mechanistic sequences are proposed in Scheme 1. (1) The coordination of $FeCl_3$ with the *cyano* group, followed by an abstraction of the benzylic proton from **9** and the

SCHEME 1. Proposed Mechanistic Pathways

subsequent removal of FeCl₂ from **10** would give the stable nitrogen-based radical **11**, with resonance structures carbon based radical **12** and the *N*-radical **13**. (2) Mediated by ferric chloride, a second SET (single electron transfer) process would occur to convert *N*-radical **13** to the nitrenium ion **14**. (3) The electrophilic attack on the nitrenium ion by the benzene ring¹³ with the subsequent loss of a proton would afford **3** (path a, Scheme 1). Alternatively, from the resonance structure **16**, the nitrogen lone pair could nucleophilicly attack the ring carbocation to give **18**. Finally, rearomatizaiton of **18** by loss of a proton would give the titled compounds **3** (path b, Scheme 1). The above proposed mechanism accounts well for the experimental facts such as the formation of gaseous HCl and the need for 2 equiv of FeCl₃ for a complete reaction.

Although no intermolecular coupled products of carbon-based radical **12** were detected in any of the reactions with FeCl₃, we

SCHEME 2. An Oxidative Coupling Reaction of 2a Mediated by $K_3Fe(CN)_6$

found that substrate **2a**, after treatment with $K_3Fe(CN)_6$, conveniently furnished the homodimer **19** in high yield without any formation of **3a** (Scheme 2). This result suggests that the radical species initially generated with FeCl₃ must be rapidly converted to the nitrenium ion **14** while $K_3Fe(CN)_6$, being a less potent oxidant (compared with FeCl₃), could not fulfill the transformation of **13** into **14** and gave the intermediate radical **12** long enough lifetime for dimerization to occur.

In summary, we have discovered a conceptually different route for the preparation of the *N*-alkoxyindole skeleton. Compared with existing methods, the key features of this new method include a tolerance to various functional groups, ready availability of the starting materials, and remarkably mild reaction conditions. Complementary to the recently described cyclodehydration of *a*-aryl ketone oximes to indoles,^{8f} this method generates the indole from its alkyl oxime ether **2** but without cleavage of the N–O bond. The widespread occurrence of *N*-alkoxyindole derivatives in natural products and pharmaceuticals might render this method broadly useful.

Experimental Section

General Procedure for the Synthesis of *N*-Alkoxyindole-3carbonitriles 3. To a solution of 3-alkoxyimino-2-aryalkylnitrles 2 (4 mmol) in CH₂Cl₂ (30 mL) was added in one portion the FeCl₃ (10 mmol) powder with stirring at room temperature. TLC was used to monitor the reaction process until the total consumption of 2. To the solution was then added H₂O (20 mL), and stirring was continued for an additional 5 min. The reaction mixture was extracted with CH₂Cl₂ (3 × 20 mL) and the organic layer was dried with anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by silica gel chromatography, using a mixture of petroleum ether and EtOAc as eluent, to give the pure products 3; the reaction time and yields are reported in Table 2. (See the Supporting Information for details.)

Acknowledgment. We thank the Tianjin Municipal Science and Technology Commission (043186011) and the Basic Research Project (No. 2003AA223151) of the MOST for financial support. J.C. thanks the National Natural Science Foundation of China (No. 20672030).

Supporting Information Available: Detailed experimental procedures and spectral data for all new compounds and X-ray structural data for **3f** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

JO7024477

⁽¹³⁾ For selective nitrenium ion's such intramolecular cyclization reactions, see: (a) Kikugawa, Y.; Kawase, M. J. Am. Chem. Soc. 1984, 106, 5728. (b) Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. J. Chem. Soc., Perkin Trans. 1 1984, 2255. (c) Kawase, M.; Kitamura, T.; Kikugawa, Y. J. Org. Chem. 1989, 54, 3394. (d) Kikugawa, Y.; Nagashima, A.; Sakamoto, T.; Miyazawa, E.; Shiiya, M. J. Org. Chem. 2003, 68, 6739. (e) Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad, J. L. Tetrahedron 1987, 43, 2577. (f) Wardrop, D. J.; Basak, A. Org. Lett. 2001, 3, 1053. (g) Correa, A.; Herrero, M. T.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. Tetrahedron 2003, 59, 7103. (h) Correa, A.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. J. Org. Chem. 2005, 70, 2256. (i) Correa, A.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín, R. J. Org. Chem. 2006, 71, 3501. (j) Correa, A.; Tellitu, I.; Domínguez, E.; Moreno, I.; SanMartín R. Org. Lett. 2006, 8, 4811 and references cited therein.